Show HN: KiDoom – Running DOOM on PCB Traces
mikeayles Tuesday, November 25, 2025I got DOOM running in KiCad by rendering it with PCB traces and footprints instead of pixels.
Walls are rendered as PCB_TRACK traces, and entities (enemies, items, player) are actual component footprints - SOT-23 for small items, SOIC-8 for decorations, QFP-64 for enemies and the player.
How I did it:
Started by patching DOOM's source code to extract vector data directly from the engine. Instead of trying to render 64,000 pixels (which would be impossibly slow), I grab the geometry DOOM already calculates internally - the drawsegs[] array for walls and vissprites[] for entities.
Added a field to the vissprite_t structure to capture entity types (MT_SHOTGUY, MT_PLAYER, etc.) during R_ProjectSprite(). This lets me map 150+ entity types to appropriate footprint categories.
The DOOM engine sends this vector data over a Unix socket to a Python plugin running in KiCad. The plugin pre-allocates pools of traces and footprints at startup, then just updates their positions each frame instead of creating/destroying objects. Calls pcbnew.Refresh() to update the display.
Runs at 10-25 FPS depending on hardware. The bottleneck is KiCad's refresh, not DOOM or the data transfer.
Also renders to an SDL window (for actual gameplay) and a Python wireframe window (for debugging), so you get three views running simultaneously.
Follow-up: ScopeDoom
After getting the wireframe renderer working, I wanted to push it somewhere more physical. Oscilloscopes in X-Y mode are vector displays - feed X coordinates to one channel, Y to the other. I didn't have a function generator, so I used my MacBook's headphone jack instead.
The sound card is just a dual-channel DAC at 44.1kHz. Wired 3.5mm jack → 1kΩ resistors → scope CH1 (X) and CH2 (Y). Reused the same vector extraction from KiDoom, but the Python script converts coordinates to ±1V range and streams them as audio samples.
Each wall becomes a wireframe box, the scope traces along each line. With ~7,000 points per frame at 44.1kHz, refresh rate is about 6 Hz - slow enough to be a slideshow, but level geometry is clearly recognizable. A 96kHz audio interface or analog scope would improve it significantly (digital scopes do sample-and-hold instead of continuous beam tracing).
Links:
KiDoom GitHub: https://github.com/MichaelAyles/KiDoom, writeup: https://www.mikeayles.com/#kidoom
ScopeDoom GitHub: https://github.com/MichaelAyles/ScopeDoom, writeup: https://www.mikeayles.com/#scopedoom