Show HN: We built a type-safe Python ORM for RedisGraph/FalkorDB
hello-tmst Wednesday, January 28, 2026We were tired of writing raw Cypher — escaping quotes, zero autocomplete, refactoring nightmares — so we built GraphORM: a type-safe Python ORM for RedisGraph/FalkorDB using pure Python objects.
What it does Instead of fragile Cypher:
query = """
MATCH (a:User {user_id: 1})-[r1:FRIEND]->(b:User)-[r2:FRIEND]->(c:User)
WHERE c.user_id <> 1 AND b.active = true
WITH b, count(r2) as friend_count
WHERE friend_count > 5
RETURN c, friend_count
ORDER BY friend_count DESC
LIMIT 10
"""
You write type-safe Python: stmt = select().match(
(UserA, FRIEND.alias("r1"), UserB),
(UserB, FRIEND.alias("r2"), UserC)
).where(
(UserA.user_id == 1) & (UserC.user_id != 1) & (UserB.active == True)
).with_(
UserB, count(FRIEND.alias("r2")).label("friend_count")
).where(
count(FRIEND.alias("r2")) > 5
).returns(
UserC, count(FRIEND.alias("r2")).label("friend_count")
).orderby(
count(FRIEND.alias("r2")).desc()
).limit(10)
Key features:
• Type-safe schema with Python type hints
• Fluent query builder (select().match().where().returns())
• Automatic batching (flush(batch_size=1000))
• Atomic transactions (with graph.transaction(): ...)
• Zero string escaping — O'Connor and "The Builder" just workTarget audience • AI/LLM agent devs: store long-term memory as graphs (User → Message → ToolCall) • Web crawler engineers: insert 10k pages + links in 12 lines vs 80 lines of Cypher • Social network builders: query "friends of friends" with indegree()/outdegree() • Data engineers: track lineage (Dataset → Transform → Output) • Python devs new to graphs: avoid Cypher learning curve
Data insertion: the real game-changer
Raw Cypher nightmare: queries = [ """CREATE (:User {email: "alice@example.com", name: "Alice O\\'Connor"})""", """CREATE (:User {email: "bob@example.com", name: "Bob \\"The Builder\\""})""" ] for q in queries: graph.query(q) # No transaction safety!
GraphORM bliss: alice = User(email="alice@example.com", name="Alice O'Connor") bob = User(email="bob@example.com", name='Bob "The Builder"') graph.add_node(alice) graph.add_edge(Follows(alice, bob, since=1704067200)) graph.flush() # One network call, atomic transaction
Try it in 30 seconds pip install graphorm
from graphorm import Node, Edge, Graph
class User(Node):
__primary_key__ = ["email"]
email: str
name: str
class Follows(Edge):
since: int
graph = Graph("social", host="localhost", port=6379)
graph.create()
alice = User(email="alice@example.com", name="Alice")
bob = User(email="bob@example.com", name="Bob")
graph.add_node(alice)
graph.add_edge(Follows(alice, bob, since=1704067200))
graph.flush()
GitHub: https://github.com/hello-tmst/graphormWe'd love honest feedback: • Does this solve a real pain point for you? • What's missing for production use? • Any API design suggestions?